Устройство и обслуживание РПН трансформаторов » Школа для электрика: электротехника и электроника

Устройство и обслуживание РПН трансформаторов » Школа для электрика: электротехника и электроника Расшифровка

Основные характеризующие параметры управления процессом регулировки

Процесс автоматического регулирования характеризуется двумя параметрами:

  • Устойчивость системы в переходном процессе. При срабатывании регулировки меняются параметры сети. Это может привести к повторному срабатыванию АРКТ. Устойчивость – это способность системы противостоять этому явлению.
  • Точность. Соответствие установившейся величины выходного напряжения заданному значению.

Основные характеризующие параметры процессов регулировочного управления

Процессы в системе АРНТ находятся в зависимости от параметров устойчивости и точности.

  1. Устойчивость характеризует переходный процесс.
  2. Точность – обязательное условие установившегося процесса.

Точность характеризуется погрешностями, действующими на установившийся режим, по завершении переходного процесса.

Устойчивость является условием самовозврата системы в установившееся положение после выведения из стабильности посторонними колебаниями, внешними  воздействиями или возмущением связанным с повреждениями в сетях.

Качество процесса регулировки определяется его близким значением к желаемому критерию качества, это:

  1. Значение максимального отклонения величины напряжения на выходе, после сигнала от скачка возмущения.
  2. Колебательность переходного процесса и, конечно, продолжительность времени его действия.

Колебания в сети напряжения 6-10 кВт вынуждают перейти на неавтоматический режим управления регулирования электроэнергией. Связанно, это с тем, что устройство АРНТ в колебательном режиме, приводящее в действие РПН, способствует его износу.
Автоматическое регулирование напряжения трансформаторов

Рис. № 3. Автоматический регулятор напряжения трансформатора: 1 – Электромагнит, 2 – Якорь элекстромагнита, 3 – якорная пружина,  4 – прокладки изолирующие, 5 – вибратор,            6 – движущийся контакт, 7 – неподвижный контакт, 8 – регулировка винтами, 9 –пружина для регулировки устройства, 10 –платформа вибратора, 11 – разъем для штепселя, 12 – регулятор корпус, 13 – конденсатор для зарядки, 14 – конденсатор для гашения искры.

Re: кто должен считать уставки аркт и омп?

ОМП входит в подгруппу, называемую РАСП.АРКТ — нет сейчас такой официальной аббревиатуры, есть АРН. Она входит в подгруппу РА (режимная автоматика).И РАСП и РА входят в РЗА в соответствии с классификацией в ГОСТ Р 55438-2022 (Приложение А).Раз ОМП и АРКТ — это устройства РЗА, то они должны являться чьими-то объектами диспетчеризации, а дальше — все по ГОСТу.4.4.

2 Субъект оперативно-диспетчерского управления в электроэнергетике выполняет расчет и выбор параметров настройки (уставок) и алгоритмов функционирования:- комплексов и устройств ПА и РА (кроме АРВ), являющихся объектами диспетчеризации;- устройств РЗ и сетевой автоматики ЛЭП напряжением 110 кВ и выше, за исключением ЛЭП с односторонним питанием;- устройств РЗ шин и ошиновок напряжением 110 кВ и выше, являющихся объектами диспетчеризации;- устройств РЗ и сетевой автоматики оборудования, являющегося объектом диспетчеризации, если требуется согласование выбранных параметров настройки (уставок) с другими устройствами РЗ и сетевой автоматики, установленными на технологически связанных объектах электроэнергетики (резервные защиты, направленные в сеть напряжением 110 кВ и выше).4.4.

3 Сетевые организации могут выполнять расчет и выбор параметров настройки (уставок) и алгоритмов функционирования устройств РЗ и сетевой автоматики:- ЛЭП напряжением 110 (150) кВ;- сборных шин и ошиновок напряжением 110 кВ и выше.4.4.4 Для устройств РЗА, не указанных в 4.4.

2, расчет и выбор параметров настройки (уставок) и алгоритмов функционирования должны обеспечивать собственники или иные законные владельцы ЛЭП и оборудования объектов электроэнергетики. При этом для устройств РЗА, требующих взаимного согласования выбранных параметров настройки (уставок) и алгоритмов функционирования, генерирующие компании, сетевые организации, потребители электрической энергии обеспечивают выбор и согласование параметров настройки (уставок) и алгоритмов функционирования устройств РЗА в соответствии с положениями или иными документами, регламентирующими взаимоотношения соответствующих собственников и иных законных владельцев ЛЭП и оборудования

Аркт — википедия переиздание

Аркт (др.-греч.Άρκτος) — одна из десяти (или двенадцати) ор в древнегреческой мифологии[1][2]. Аркт была служанкой Гармонии, вместе с Дюсис и Мемсебриадой. Аркт, как и все оры, являлась дочерью Зевса и Фемиды[3]. Также Аркт являлась одной из богинь жизни[4]. Служения в честь оры Аркт проводились 16 июля[5].

Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.

Арнт производит регулировку на три вида, это:

  1. Стабилизированная регулировка.
  2. Система программного регулирования, происходящие в ней изменения следуют по заранее обозначенному закону.
  3. Следящая система, завязана на законе изменения задающего воздействия, его параметры изначально не известны и задаются по ходу работы.
    Автоматическое регулирование напряжения трансформаторов

Рис. № 1. Регулирование напряжения в стабилизированном режиме.
Насколько полно в системе будет скомпенсировано влияние посторонних возмущений, настолько точно будет воспроизводиться задающее воздействие.
Автоматическое регулирование напряжения трансформаторов

Другие сокращения:  Система автоматического управления и диспетчеризации здания

Рис. № 2. Структурная схема АРНТ.

Блок автоматического регулирования коэффициента трансформации

Для осуществления управления РПН в автоматическом режиме, устройства регулировки обеспечиваются БАР (блокам автоматического регулирования) для изменения коэффициента трансформации – АРКТ или АРНТ. Устройство реагирует на напряжение шин питающей подстанции.
Автоматическое регулирование напряжения трансформаторов

Рис. № 4. Схема присоединения токовой компенсации к измеряющему трансформатору в системе АРНТ.

Неизменным считается наличие в схеме токовой компенсации, она служит для осуществления встречного регулировки, и нужна для установки неизменяемого и стабильного показания напряжения в сети потребителей. Значение напряжения токовой компенсации определяется по току в линии и по падению значений напряжения в линии оттока нагрузки.

Устройства РПН в обязательном порядке находятся в одном режиме с включенным блоком АРТН. Дистанционное или местное управление осуществляется тогда, когда АРНТ выходит из строя или если в сети наблюдаются значительные колебания напряжения.
Автоматическое регулирование напряжения трансформаторов

Рис. № 5. Внешний вид блока автоматического регулирования напряжения трансформатора (БАР).

Виды регулирования

Различают два вида переключений;

  • ПБВ – переключение без возбуждения. Производится при отсутствии напряжения на первичной обмотке.
  • РПН – регулировка под нагрузкой. Выполняется во время работы, а контакты переключателя имеют дугогасящие камеры.

Само переключение выполняется разными способами:

  • Ручное. Производится оператором с пульта управления исходя их показаний приборов.
  • Дистанционное. Также выполняется оператором, но не вручную, а с пульта управления.
  • Автоматическое. Осуществляется системой АРНТ по заранее заданным параметрам.

Есть три принципа работы системы автоматической регулировки:

  • Стабилизация. Происходит поддержание стабильного выходного напряжения.
  • Программное регулирование. Производится по заданной программе, например, в выходные напряжение слегка понижается для экономии электроэнергии или во время плавки в электропечах и повышенных потерях в кабелях повышается для обеспечения нормальной работы других потребителей.
  • Следящая система. Учитывает различные параметры в разных участках сети и кабельных линий большой протяжённости.

Информация! Чем больше точек измерения и учтенных факторов, тем точнее регулировка, но это приводит к усложнению и удорожанию системы, поэтому при проектировании учитывается влияние только основных параметров.

Для каких целей предназначаются системы и устройства автоматического регулирования напряжения

При изменении нагрузки меняется напряжение в сети у потребителей. Это связано изменением тока и величины потерь во вторичной обмотке и кабелях. Колебания, происходят также при изменении параметров энергосистемы региона.

Для стабилизации используются различные методы:

  • Стабилизированные источники питания. Используются в отдельных электроприборах.
  • Стабилизаторы на основе автотрансформаторов. Устанавливаются в квартире, частном доме или небольшой мастерской.
  • АРН силовых понижающих трансформаторов. Стабилизирует параметры сети для всех подключенных к нему устройств. Основана на изменении числа витков первичной обмотки и изменении коэффициента трансформации.

Информация! АРНТ является основным способом поддержания параметров сети для ВСЕХ подключенных к ней потребителей.

Расчет уставок автоматического регулятора напряжения трансформаторов

Осуществление подбора уставок регулировки по напряжению происходит, сообразуюсь с режимом нагрузок по минимуму, где значение шинного напряжения и близлежащих потребительских линий не должна превышать 1,5 Uном.

При работе, для осуществления встречного регулирования, производится  коррекция величины напряжения, согласно значению тока нагрузки на отходящих линиях. Падение напряжения в линии электропередачи определяется замером от точки замера  измерительного трансформатора напряжения (НТМИ), от которого запитан регулятор и местом подключения нагрузки потребителя с заданным неизменяемым значением напряжения.

Это напряжение необходимо разделить на коэффициент трансформации ТН. После чего полученное значение напряжения применяется для установки первой уставки напряжения на первой шкале и на второй шкале для второй уставки.

Если значение не превышает 1,05 Uном, расположенных поблизости потребителей, уставка изменяется и напряжение снова проверяется исходя из корректировочных значений.

Важно: напряжение питания удаленного потребителя не должно понижаться менее -5%, напряжение у ближних потребителей оно не увеличиваться больше 5%.

Система программного регулирования осуществляет действия по двухступенчатому графику, это может быть суточный график, где уставки равны режимам максимальной и минимальной нагрузки, и недельный график, где во внимание принимается режим выходного дня со своими уставками.
Автоматическое регулирование напряжения трансформаторов

Рис. № 6. Суточный график 1) без проведения регулирования, 2) с проведением одноступенчатого регулирования напряжения, производится утром и вечером.

Таким образом, режим коррекции, который представляет собой длительную и кропотливую работу по определению выбора уставок удается избежать.

Существует три показателя, соблюдение, которых является обязательным условием при выборе уставок.

  1. Определение ширины зоны чувствительности.

Этот показатель демонстрирует значение отклонения напряжения от заданной уставки, при которой не срабатывает команда на начало регулировки напряжения. Она зависит от колебательного режима в сети напряжения при ее регулировании. Ширина зоны нечувствительности не должна превышать значения величины ступени регулировки трансформатора РПН. Коэффициент запаса не должен превышать предел менее 1,3.

Другие сокращения:  TRP в вопросах и ответах. Читайте на

Пример выбора величины зоны чувствительности на ее нижней границе. Если нижняя граница напряжения принимается как 6000В, то по показаниям НТМИ принимаем 100% .

6000В / 60В = 100В(нижняя зона чувствительности) = 103% (верхняя зона чувствительности)

Распределяем штекера по шкале 1(В), «грубо» 100В = 100%

Штекер ставится в положение «зона» 3В = 3%

Принимаем нижнюю границу 100В*60 = 6000В

Верхняя граница 103В*60 = 6180В

  1. Выдержка времени задержки сигналов управления.

Ее выбор происходит соответственно возможности и продолжительности кратковременных скачков напряжения при изменяющемся характере нагрузки. Этот режим сказывается на частоте срабатывания РПН в автоматическом режиме, поэтому для предотвращения износа РПН автоматический режим отключают и РПН переводят на режим дистанционного управления.  Большая выдержка времени уменьшает количество операций с РПН и предназначена для экономии ресурса РПН.

В случае если автоматическое управление необходимо, максимальное значение времени, при котором происходит срабатывание команды регулирования, выставляют 160 – 180сек.

Определение выдержки времени, от которого зависит контроль исправности РПН. Контроль длительного цикла времени переключателя составляет 15 сек. Он зависит от установки на плате формирователя в конструкции АРТ-1М, которая запаивается в положении 2-3. Это положение рекомендовано для большинства РПН, при необходимости время контроля можно увеличить, перепаяв перемычку в положение 1-3, что соответствует 30 сек.

  1. Время контроля

Производится для обеспечения исправности цепей запуска действующего электропривода РПН не изменяется и равно 0,6 сек. Выдержка времени для контроля переключения должна перекрывать время переключения привода на 1 ступень РПН. Он постоянно для любых типов РПН.

Важно: Негативное влияние блока АРТН на устройство РПН связано с алгоритмом работы блока. При неуравновешенном и нестабильном состоянии напряжения в линии, происходит частое включение блока, оно сказывается на быстром износе РПН, что приводит к его замене. Чтобы избежать этого режим регулирования и управления переводят в дистанционный или ручной режим.

Устройство и обслуживание рпн трансформаторов

Устройства регулирования напряжения трансформаторов (ПБВ и РПН)

При регулировании напряжения переключением ответвлений обмоток трансформаторов изменяют их коэффициенты трансформации

где WBH И WНH — числа включенных в работу витков обмоток ВН и НН соответственно.

Это позволяет поддерживать на шинах НН (СН) подстанций напряжение, близкое к номинальному, когда первичное напряжение отклоняется по тем или иным причинам от номинального.

Переключают ответвления на отключенных от сети трансформаторах устройствами ПБВ (переключение без возбуждения) или на работающих трансформаторах под нагрузкой устройствами РПН (регулирование под нагрузкой).

три однофазных переключателя ответвлений, установленных на крышке трансформатора

Устройствами ПБВ снабжаются почти все трансформаторы. Они позволяют изменять коэффициент трансформации ступенями в пределах ±5% номинального напряжения. Применяются ручные трехфазные и однофазные переключатели.

Трансформаторы с РПН имеют большее число регулировочных ступеней и более широкий диапазон регулирования (до ±16 %), чем у трансформаторов с ПБВ. Применяемые схемы регулирования напряжения на трансформаторах показаны на рис. 1. Часть обмотки ВН с ответвлениями называется регулировочной обмоткой.

Рис. 1. Схема регулирования на трансформаторах без реверсирования (а) и с реверсированием (б) регулировочной обмотки: 1, 2 — первичная и вторичная обмотки соответственно, 3 — регулировочная обмотка, 4 — переключающее устройство, 5 — реверсор

Расширение регулировочного диапазона без увеличения числа отводов достигается применением схем с реверсированием (рис. 1,б). Переключатель — реверсор 5 позволяет присоединять регулировочную обмотку 3 к основной 1 согласно или встречно, благодаря чему диапазон регулирования удваивается. У трансформаторов устройства РПН обычно включаются со стороны нейтрали, что позволяет выполнять их с пониженной на класс напряжения изоляцией.

Регулирование напряжения автотрансформаторов, осуществляемое на стороне СН или ВН, показано на рис. 2. Устройства РПН в этих случаях изолируются на полное напряжение вывода, со стороны которого оно установлено.

Устройства РПН состоят из следующих основных частей: контактора, размыкающего и замыкающего цепь рабочего тока в процессе коммутации, избирателя, контакты которого размыкают и замыкают электрическую цепь без тока, приводного механизма, токоограничивающего реактора или резистора.

Рис. 2. Схема регулирования на автотрансформаторах: а — на стороне ВН, б — на стороне СН

Последовательность работы устройств РПН с реактором (серий РНО, РНТ) и с резистором (серий РНОА, РНТА) показана на рис. 3. Необходимая очередность в работе контакторов и избирателей обеспечивается приводным механизмом с реверсивным пускателем.

В устройстве РПН с реактором реактор рассчитан на длительное прохождение номинального тока. В нормальном режиме через реактор проходит только ток нагрузки. В процессе переключения ответвлений, когда часть регулировочной обмотки оказывается замкнутой реактором (рис. 3,г), он ограничивает до приемлемых значений ток I, проходящий в замкнутом контуре.

Рис. 3. Последовательность работы переключающих устройств РПН с реактором (а—ж) и резистором (з—н): К1—К4 — контакторы, РО — регулировочная обмотка, Р — реактор, R1 и R2 — резисторы, П — переключатели (избиратели)

Реактор и избиратель, на контактах которого дуги не возникает, обычно размещают в баке трансформатора, а контактор помещают в отдельном масляном баке, чтобы не допускать разложения электрической дугой масла, находящегося в трансформаторе.

Другие сокращения:  Реле РТТ 111, РТТ 121, РТТ 131, РТТ 141, РТТ 211, РТТ 221, РТТ 231, РТТ 321, РТТ5-10 - расшифровка, характеристики, маркировка, цена

Действие переключающих устройств РПН с резистором во многом сходно с работой РПН с реактором. Отличие состоит в том, что в нормальном режиме работы резисторы зашунтированы или отключены и ток по ним не проходит, а в процессе коммутации ток проходит в течение сотых долей секунды.

Резисторы не рассчитаны на длительную работу под током, поэтому переключение контактов происходит быстро под действием мощных пружин. Резисторы имеют небольшие размеры и являются, как правило, конструктивной частью контактора.

Устройства РПН приводятся в действие дистанционно со щита управления и автоматически от устройств регулирования напряжения. Предусмотрено переключение приводного механизма с помощью кнопки, расположенной в шкафу привода (местное управление), а также с помощью рукоятки. Переключение РПН рукояткой под напряжением не рекомендуется выполнять оперативному персоналу.

Один цикл работы РПН разных типов происходит за время от 3 до 10 с. Процесс переключения сигнализируется красной лампой, которая загорается в момент подачи импульса и продолжает гореть все время, пока механизм не закончит весь цикл переключения с одной ступени на другую. Независимо от длительности одного импульса на пуск устройства РПН имеют блокировку, разрешающую переход избирателя только на одну ступень. По окончании движения переключающего механизма заканчивают перемещение дистанционные указатели положения, показывая номер ступени, на которой остановился переключатель.

Для автоматического управления устройства РПН снабжаются блоками автоматического регулирования коэффициента трансформации (АРКТ). Структурная схема автоматического регулятора напряжения показана на рис. 4.

Регулируемое напряжение подается на зажимы блока АРКТ от трансформатора напряжения. Кроме того, устройством токовой компенсации ТК учитывается еще падение напряжения от тока нагрузки. На выходе блока АРКТ исполнительный орган И управляет работой приводного механизма РПН. Схемы автоматических регуляторов напряжения весьма разнообразны, но все они, как правило, содержат основные элементы, указанные на рис. 4.

Рис. 4. Структурная схема автоматического регулятора напряжения: 1 — регулируемый трансформатор, 2 — трансформатор тока, 3 — трансформатор напряжения, ТК — устройство токовой компенсации, ИО — измерительный орган, У — орган усиления, В — орган выдержки времени, И — исполнительный орган, ИП — источник питания, ПМ — приводной механизм

Обслуживание устройств регулирования напряжения

Перестановка переключателей ПБВ с одной ступени на другую в эксплуатации производится редко — 2—3 раза в год (это так называемое сезонное регулирование напряжения). При длительной работе без переключения контактные стержни и кольца переключателей барабанного типа покрываются пленкой окиси.

Чтобы разрушить эту пленку и создать хороший контакт, рекомендуется при каждом переводе переключателя предварительно прокручивать его (не менее 5—10 раз) из одного крайнего положения в другое.

При пофазном переводе переключателей следует проверять их одинаковое положение. Приводы переключателей после перевода фиксируются стопорными болтами.

Устройства РПН должны постоянно находиться в работе с включенными автоматическими регуляторами напряжения. При осмотрах РПН сверяют показания указателей положения переключателей на щите управления и на приводах РПН, так как по ряду причин возможно рассогласование сельсина-датчика и сельсина-приемника, являющихся приводами для указателей положения. Проверяют также одинаковое положение переключателей РПН всех параллельно работающих трансформаторов и отдельных фаз при пофазном управлении.

Наличие масла в баке контактора проверяется по маслоуказателю. Уровень масла следует поддерживать в допустимых пределах. При пониженном уровне масла время горения дуги на контактах может быть недопустимо большим, что опасно для переключающего устройства и трансформатора. Отклонение от нормальной отметки уровня масла обычно наблюдается при нарушении уплотнений отдельных узлов масляной системы.

Нормальная работа контакторов гарантируется при температуре масла не ниже —20 °С. При более низкой температуре масло сильно густеет и контактор испытывает значительные механические нагрузки, которые могут привести к его поломке. Кроме того, возможно повреждение резисторов из-за увеличения времени переключения и более длительного пребывания их под током. Чтобы избежать указанных повреждений, при понижении температуры окружающего воздуха до —15 °С должна включаться система автоматического обогрева бака контакторов.

Приводные механизмы РПН являются наиболее ответственными и в то же время наименее надежными узлами этих устройств. Их необходимо предохранять от попадания пыли, влаги, трансформаторного масла. Дверца шкафа приводного механизма должна быть уплотнена и надежно закрыта.

Устройство систем переключения

Переключатели устанавливаются со стороны первичной обмотки. Ток, протекающий в ней ниже и регулятор получается меньше и дешевле. Проще всего устроен переключатель для переключения без возбуждения, но процесс настройки связан с отключением потребителей.

При регулировке под нагрузкой возможна ситуация, при которой подвижные контакты замыкают одновременно два вывода, образуя короткозамкнутый виток. Для ограничения тока в нем устанавливаются токоограничивающие реакторы или резисторы.

Оцените статью
Расшифруй.Ру