- Что обозначает маркировка на двигателе tdi
- Почему увеличивается уровень масла в моторе 2.0 tdi (bmm) c 8-клапанной гбц?
- Cимволы 7-8
- Volkswagen touareg – номер двигателя 3.0 tdi, 3.6 fsi, 4.1 tdi, 4,2 fsi
- Возможные проблемы с crdi
- История и особенности конструкции 1.9 tdi
- Недостатки
- Общая оценка преимуществ tdi
- Особенности устройства
- Особенности эксплуатации cdi двигателя
- Паровые машины
- Проблемы с турбиной и сажевым фильтром на моторе 2.0 tdi (bmm)
- Серный вопрос
- Турбонаддув tdi: турбина с изменяемой геометрией
Что обозначает маркировка на двигателе tdi
Для удобства идентификации двигателя, получения некоторой информации о нем японские автопроизводители используют системы составления названия моторов. Очень часто такая информация помогает осуществить верный выбор модификации автомобиля при покупке, соориентироваться во всем многообразии силовых агрегатов.
Сразу оговоримся, что здесь в основном рассматриваются бензиновые двигатели, т.к. система кодирования дизелей малоинформативна, и, что единых для всех производителей принципов маркировки не существует. Наиболее информативными и простыми для идентификации системами образования названия двигателя считаются тойотовская и ниссановская. С них и начнем.
ToyotaПример: 3S-GE
Лидер японского автомобилестроения обозначает свои двигатели двумя группами цифр и букв, разделителем которых служит тире. Первая группа символов, как правило имеет первую цифру, после которой находятся одна или две буквы. Особо важной информации из этого кода получить нет возможности, т.к. от обозначает непосредственно модель двигателя в рамках семейства.
Например, двгатели 4S-FE (1,8 л) и 3S-FE (2,0 л) принадлежат одному семейству S, т.е. конструктивно схожи. К минусам системы составления маркировки двигателей Toyota сразу отнесем невозможность получения информации об их рабочем объеме и числе цилиндров.
Больший интерес представляет набор букв, располагающихся после тире и отражающих комплектацию двигателя.
Первая буква во второй группе символов обычно F или G, которые говорят, что мотор «ТвинКамовский». Если этих букв в маркировке нет, то у данного двигателя по 2 клапана на цилиндр.
G — 4 клапана на цилиндр (TwinCam), 2 распредвала с отдельным приводом, «широкая» головка. Это наиболее форсированные двигатели, которые также могут иметь турбо-версии. (3S-GE)F — 4 клапана на цилиндр (TwinCam), 2 распредвала с последовательным приводом, «узкая» головка.
Турбированные за редким исключением. (1MZ-FE)T — Одна турбина (Turbo) или две турбины (TwinTurbo) (1JZ-GTE, 4E-FTE)Z — Суперчарджер (4A-GZE)E — Электронный многоточечный впрыск (EFI) (5A-FE)E — Электронно-управляемый ТНВД (для дизелей)S — Непосредственный впрыск (3S-FSE, 2JZ-FSE, D-4)X — Гибридный двигатель (1NNZ-FXE)
NissanПример: SR20DET
Маркировка двигателей Nissan, пожалуй, еще более информативна, чем у Toyota. По крайней мере, за счет наличия информации о литраже.Первые две буквы указывают на серию, далее двумя цифрами отражен объем двигателя (умнощив их на сто получаем объем в см3). После информации о рабочем объеме закодирована комплектация.
D — 4 клапана на цилиндр (DOHC)V — Регулируемые фазы газораспределения, DOHCE — Электронный многоточечный впрыск (EGI)S — КарбюраторT — ТурбинаTT — Две турбины
HondaПример: H22A
Много стоящей информации из маркировки своих моторов Honda нам узнать не позволяет. По аналогии с Nissan можно узнать рабочий объем двигателя. Перед этими цифрами стоит буква, обозначающяя принадлежность мотора к определенной серии. После двух цифр есть еще одна буква — модификация двигателя в рамках серии A, B или С. Есть основания полагать, что чем дальше от A, тем мотор совершеннее.
MitsubishiПример: 4M40
Mitsubishi, в отличии от рассмотренных выше производителей, предоставляет данные о числе цилиндров (это первая цифра).
A, G — бензиновый двигательD — дизельный двигательM — дизельный двигатель, топливный насос высокого давления с электронным управлениемСледом находятся две цифры (принадлежность к серии), после которых может стоять T, указывающая на наличие турбин(ы).
MazdaПример: WL-T
Довольно запутанная система, похоже, не имеющая четких принципов, которых не всегда придерживаются. Например, из навания дизеля RF получить какую-либо информацию невозможно.Z, D — 4 клапана на цилиндр, 2 распредвалаM — 4 клапана на цилиндр, 1 распредвалE — электронный многоточечный впрыскR — роторный (13B-REW)T — турбина (WL-T)
SuzukiПример: G16A
Первая буква — серияЦифры — рабочий объемДалее A или B (что характеризуют неизвестно)
SubaruПример: EJ20
В состав кода входят две буквы (серия) и две цифры (рабочий объем).
IsuzuПример: 6VD1
Первая цифра — число цилиндровБуквы и цифры, находящиеся далее, означают сериюЕсли первая из букв V — мотор V-образный
Почему увеличивается уровень масла в моторе 2.0 tdi (bmm) c 8-клапанной гбц?
При всей своей простоте 8-клапанный TDI не лишен врожденных проблем. Пожалуй, самый серьезный его недостаток как раз кроется в простой, если не сказать архаичной, конструкции. Обычно дизтопливо попадает в масляный картер и смешивается с моторным маслом по следующим причинам:
- ослабление «однобоких» креплений насос-форсунок;
- нарушение герметичности уплотнительных колец форсунок;
- негерметичность сальника тандемного насоса.
Дело в том, что каждая из его насос-форсунок крепится одним винтом M6. Причем болт крепит не насос-форсунку непосредственно, а ее зажим (кроншейн). А зажим фиксирует насос-форсунку, прижимая ее к посадочному гнезду в ГБЦ с одной стороны. У 16-клапанных моторов TDI насос-форсунки крепятся двумя винтами М6, проходящими через отверстия в отливках их корпусов. То есть крепление непосредственное и более надежное. Плюс, у 8-клапанника болты крепления короче: 64 мм против 88 мм.
Архаичное и ненадежное крепление насос-форсунок на моторе BMM имеет склонность ослабевать. Это случается к пробегу в 200 000 и иногда 300 000 км. Крепление ослабевает, при работе двигателя появляется люфт во время нажатия коромысла на плунжер насос-форсунки.
В результате форсунка разбивает свой посадочный колодец (посадочное гнездо) и ее уплотнения перестают удерживать топливо. Топливо на этих двигателях подается в насос-форсунки через каналы в ГБЦ, выходящие в посадочные колодца. Там же рядом присутствуют и каналы «обратки».
Пока посадочные колодцы не разбиты, резиновые уплотнения форсунок удерживают топливо, которое идет строго на питание форсунок. Когда появляется люфт, топливо начинает просачиваться через ослабшие уплотнения на поверхность ГБЦ, где оно смешивается с моторным маслом. Также возможно протекание топлива в камеры сгорания.
Признаком люфта насос-форсунок и попадания топлива в масло на моторе 2.0 TDI является увеличение его уровня. Если владельцы машин с бензиновыми TSI-моторами просто обязаны следить за снижением уровня масла, то владельцы авто с двигателями TDI с 2-мя клапанами на цилиндр должны следить за повышением уровня масла.
Если течет одна или две насос-форсунки, то уровень масла может увеличиться в два или три раза всего за пару сотен километров пробега. Также одним из первых признаков течи форсунок на моторе BMM является неуверенный запуск двигателя по утрам («на холодную»).
По заводской технологии ремонт ГБЦ с разбитыми гнездами насос-форсунок не предусмотрен. Производитель предлагает менять ГБЦ на новую. На некоторых СТО предлагают запрессовку стальных гильз в посадочные гнезда насос-форсунок с установкой новых резиновых уплотнений.
К чему приводит разжижение моторного масла соляркой говорить не надо. Двигатель, в масляном поддоне которого оказалось топливо, просто нельзя эксплуатировать. Чаще всего на моторе 2.0 TDI (BMM) при попадании солярки в масло «прикипают» шатунные вкладыши или вкладыши коленвала.
Мотор заклинивает, что нередко сопровождается поломкой коленвала. Такая неприятность может случиться сразу после начала протекания форсунок. При разборе из таких двигателей сливают двойной (и более того) объем масла. Также при разжижении масла может происходить изнашивание и даже стачивание некоторых гидрокомпенсаторов.
Если топливо на двигателе 2.0 TDI просачивается в камеры сгорания, то через некоторое время это может привести к прогоранию поршней. Обычно прогорает один поршень, что сопровождается серьезным уроном ЦПГ и мотору в целом.
Также к появлению солярки в масле двигателя 2.0 TDI может привести потеря герметичности в уплотнениях тандемного топливно-вакуумного насоса. Сальник вала тандемного насоса разделяет его топливную и вакуумную части. Если сальник не будет удерживать топливо, то оно просочится в вакуумную часть насоса, а оттуда – в картер двигателя.
Cимволы 7-8
Эти символы означают модельный ряд автомобиля. В нашем примере – 1J, значит, Golf IV.
Смотрите на расшифровки:
11 — VW 1200 (Typ 111) / Tipo 1 (Typ 111, 113) /Volkswagen Kaffer/ 12 — up! (Typ 6A1, 6A5) 13 — Scirocco (Typ 137) 13 — Scirocco (Typ 138) 14 — Caddy I (Typ 147, 148, 1AE) 15 — Bora (Typ 152) 15 — Jetta I (Typ 161, 162, 163, 164)
15 — Golf II (Typ 171,172, 173, 174) 15 — Scirocco (Typ 533, 534) 16 — Golf I Cabrio / Rabbit Convertible (Typ 154, 155) 16 — Golf II (Typ 171, 172, 173, 174) 16 — Golf II (Typ 191, 192, 193, 194) 16 — Golf Syncro (Typ 191, 192, 193, 194)
16 — Golf (Syncro) (Typ 1G1) 16 — Rallye Golf Syncro (Typ 1G4) 16 — Jetta II (Typ 161, 162, 163, 164) 16 — Jetta II (Typ 165, 166, 167, 168) 16 — Jetta / Vento (Typ 162) 16 — Jetta (Typ 163) 16 — Jetta Syncro / Golf GT Syncro (Typ 167, 168)
16 — Jetta (Syncro) (Typ 1G2) 16 — Jetta (Typ AV2) / Jetta (Typ AY2, AY3) / Jetta (Typ AV3) 16 — Scirocco (Typ 533, 534) 16 — New Beetle (Typ 5C1) / New Beetle Cabriolet (5C7) 17 — Golf I Cabrio / Rabbit Convertible (Typ 154, 155)
17 — Golf II / Rabbit (Typ 177, 178, 179) 17 — Golf II (Typ 171, 172, 173, 174) 17 — Golf II (Typ 176) 17 — Golf (Typ 174, 176) 17 — Jetta II (Typ 161, 162, 163, 164) 17 — Jetta II (Typ 167) 17 — Rabbit (Typ 175) 17 — Caddy (Typ 170)
17 — Scirocco (Typ 533, 534) 18 — Iltis (Typ 183) 18 — Lavida (Typ 181, 182, 183) 19 — Jetta II (Typ 165, 166, 167, 168) 19 — Golf II (Typ 191, 192, 193, 194) 19 — Golf II (1983…1992), Jetta II (1984…1991) 19 — Golf (Syncro) (Typ 1G1)
16 — Rallye Golf Syncro (Typ 1G4) 19 — Jetta (Syncro) (Typ 1G2) 1B — Tipo 1 (Typ 111, 113) /Volkswagen Kaffer/ 1C — New Beetle (Typ 1C1, 1C9, 9C1, 9G1) 1E — Golf III Cabrio (1993…1998) 1F — EOS (Typ 1F7, 1F8) 1G — Golf II, Jetta II 1H — Golf III (1991…1997)
, Vento, Golf III Variant (1993…1999) 1J — Golf IV (1997…2003), Bora, Golf IV Variant (1999…2007), Golf IV Cabrio (1998…) 1K — Golf V (2003…2009), Golf Plus (2004…), Golf V Variant (2007…2022) 1L — XL-1 (2022) 1T — Touran (2003…2022) 1V — Golf Cabrio 1W — Golf, Jetta, Vento 1Y — New Beetle Convertible (2003…2022)
21 — LT 24 — Transporter (бортовой) 25 — Transporter / Multivan / California T3 (автобус, фургон, комби) (1980…1992) 28 — LT 2A — Transporter Syncro 2C — Caddy III (2022…2022) 2D — LT (1996…2006) 2E — Crafter 2F — Crafter (2006…)
2H — Amarok (2022…) 2K — Caddy II (2004…2022) 2V — L80 31 — Passat B3 (1988…1993) 32 — Passat B2 (1980…1988) 32 — Passat B1 (…1980) 33 — Passat B1 (…1980) 35 — Passat CC (2008…2022) 36 — Passat B7 (2022…2022) 3A — Passat B4 1994…1996)
3B — Passat B5 (1996…2005) 3C — Passat B6 (2005…2022) 3C — Passat B7 (2022…2022) 3C — Passat B8 (2022…) 3D — Phaeton (2002…2022) 3G — Passat B8 (2022…) 3H — Arteon (2022…) 50 — Corrado 53 — Scirocco 5C — New Beetle II / Cabrio (2022…)
5K — Golf VI (2009…2022) 5M — Golf Plus (2009…2022) 5N — Tiguan (2007…2022) 5T — Touran II (2022…) 5U — Gol (2008…) 5Z — Fox (2004…) 5Z — Suran/Spacebox (2022…2022) 60 — Ameo / Polo (седан с укороченным багажником индийского производства)
61 — Polo Sedan (2022…) 6C — Polo V (2022…) 6E — Lupo 3L TDI 6K — Polo III Classic (1995…2000)/ Variant (1997…2000) 6N — Polo III (1994…2000) 6S — Polo Vivo (Classic) (2022…) 6R — Polo V (2009…2022) 6V — Polo Classic / Variant 6X — Lupo 70 — Transporter / Caravelle / Multivan T4 (1991…1996)
7A — Taro (1989…1997) 7D — Transporter / Caravelle / Multivan T4 (1996…2003) 7E — Transporter / Multivan / Caravelle / California T5 (2022…2022) 7H — Transporter / Multivan / Caravelle / California T5 (2003…2009) 7L — Touareg (2002…2022)
7M — Sharan I (1995…2022) 7N — Sharan II (2022…) 7P — Touareg II (2022…) 80 — Polo (1990-1994) 82 — Polo Coupe 86 — Polo I/II (…1994) 87 — Polo Classic/Coupe 9C — New Beetle Europa (1999…2002) 9K — Caddy 9M — Jetta 9N — Polo IV (1999…2022)
9U — Caddy A1 — T-Roc A7 — Polo (седан с укороченным багажником индийского производства для Южной Америки) AA — up! AD — Tiguan II (2022…) AM — Golf Sportsvan (2022…) AU — Golf VII (typ 5g) BR — Gran Santana (2022…) CA — Atlas SA — Caddy IV (2022…) SG — Transporter / Multivan / Caravelle / California T6 (2022…)
Volkswagen touareg – номер двигателя 3.0 tdi, 3.6 fsi, 4.1 tdi, 4,2 fsi
Если до VIN-номера Touareg позволяет добраться без лишних проблем, то номер двигателя, какой бы агрегат вы не выбрали, обязательно вынесет мозг даже несмотря на то, что во всех перечисленных случаях обозначение находится на передней части блока цилиндров.
Начнём, пожалуй, с самых распространённых моторов V6. Бензиновая силовая установка FSI объёмом 3.6-литра (CMTA – 249 л.с., CGRA – 280 л.с.) спрятала номер двигателя в самом низу, впритирку со шкивом коленвала, а точнее справа от него (справа по ходу движения, естественно). Площадка расположена вертикально:
Номер двигателя дизелей V6 3.0 TDI мощностью 204 л.с (CASD, CJMA) и 245 л.с (CRCA, CJGD) спрятался на наклонной площадке за креплением ролика, причём именно спрятался, так как без определённой сноровки к нему не добраться. Несмотря на то, что маркировка, как уже говорилось, находится спереди, осмотреть её можно сверху, предварительно сняв пластиковую декоративную крышку:
После доработки в 2022 году вместо CASA ставили только моторы CJMA и CRCA. Номер тут проще посмотреть с передней части мотора. Нужно заглянуть за ролик:
Агрегаты V8 встречаются гораздо реже и номер двигателя у них отыскать ничуть не легче. Мотор 4.1 TDI (CKDA, 340 л.с.) образмечен примерно там же, где и 3-литровый TDI – спереди на наклонной площадке возле маслозаливной горловины:
Бензиновый гигант 4.2 FSI (CGNA, 360 л.с.) маркировку особо не прячет. Для полного доступа достаточно только снять переднюю декоративную крышку – номер расположен на горизонтальной площадке прямо посередине передней части центрального блока двигателя:
Возможные проблемы с crdi
Тем не менее, дизельные автомобили в нашей стране не пользуются такой уж любовью и популярностью, как на западе. Для этого есть свои причины и у такой системы, тоже есть свои недостатки.
Так например, хотя Common Rail Direct Injection и надежнее обычных систем с ТНВД, высочайшая точность всех деталей и элементов, а так же наличие множества электронных компонентов, делают ее не столь уж и надежной. Усложнение системы, практически всегда ведет к снижению ее надежности.
Особенно это ощущается отечественными автомобилистами. Ведь важнейшим параметром для длительной и стабильной работы CRDI двигателя, является качество топлива. А на отечественных АЗС с этим часто возникают серьезные проблемы. Вот так, просто и незаметно плохая солярка убивает даже самые надежные и качественные моторы.
Дороговизна ремонта или замены элементов CRDI двигателя, факт так же хорошо известный владельцам таких машин. Цена ремонта современных дизельных моторов на порядки превосходит стоимость тех же работ для моторов, работающих на бензине. К тому же, для проведения ремонта в таких моторах нужно специальное оборудование и высококлассные профессионалы.
Ну и конечно же, особенности климата, а конкретнее низкие температуры зимой, так же могут создавать серьезные помехи для нормальной работы мотора на тяжелом топливе, независимо от системы этого мотора. И приходится устанавливать догреватели топлива, автономные печки и другое оборудование, призванное снизить негативное влияние мороза на дизельное топливо. Так же с этой целью используют различные антигели и другие присадки.
В общем-то, правильный подбор вспомогательных средств позволяет устранить большинство ситуаций, когда в морозы дизельный автомобиль отказывается запускаться. Но ведь с бензиновыми моторами таких проблем вообще не возникает. Вот и стараются люди без лишней нужды с дизелями не связываться.
Тем не менее, с каждым годом их становится все больше на наших улицах и дорогах. Появляются специалисты, способные качественно ремонтировать CRDI и другие виды дизельных моторов, улучшается качество солярки, появляется и расширяется опыт эксплуатации подобных систем. Все это способствует росту числа машин, работающих на тяжелом топливе.
В итоге, можно сказать, что Common Rail Direct Injection на сегодняшний день, это лучший вариант системы для дизельного двигателя и при бережном к нему отношении, такой мотор сполна проявит все свои достоинства и позитивные качества. Между тем, у таких моторов есть ряд недостатков, которые заставляют хорошенько подумать перед приобретением автомобиля оснащенного двигателем CRDI.
История и особенности конструкции 1.9 tdi
Этот мотор имеет 4 цилиндра, 8 клапанов, турбину. Предназначенный для небольших и среднеразмерных автомобилей концерна, 1.9 TDI оснащается разными системами впрыска: непосредственным или насос-форсунками.
За почти 20-летнюю историю выпуска, 1.9 TDI получил больше десятка модификаций с разными кодовыми обозначениями. Причем версий легендарного турдодизеля больше, чем вариантов форсировки. А сами двигатели с общим объемом и под общим названием 1.9 TDI различаются кардинально: система питания, тип турбины, сплав блока и головки цилиндров.
В зависимости от версии, мощность 1.9 TDI может составить 90, 110, 115, 130 и 150 л.с.
1,9-литровый турбодизель ставили на разные модели концерна VAG, причем версии, близкие к 90-сильномк «предку» — с ТНВД и простыми форсунками, обычной турбиной и без двухмассового маховика — сохранялись в производстве до 2009 года. Правда, последние годы выпуска их монтировали только на немногие бюджетные модели.
Устанавливали различные версии 1.9 TDI на:
- Audi 80 — 1991-1994
- Audi A3 (I, II, Sportback) — 1996-2022
- Audi A4 (В4, В5, В6, В7) — 1995-2008
- Audi A6 (C4, C5) — 1994-2005
- VW Golf (III, IV, V, Plus) — 1993-2009
- VW Polo — 2001-2009
- VW Passat (В4, В5, В6) — 1993-2008
- VW Sharan — 1995-2022
- VW Touran — 2003-2022
- Skoda Fabia (I, II) — 2000-2022
- Skoda Octavia (I, II) — 1996-2022
- Skoda Superb (I, II) — 2001-2022
- Skoda Roomster — 2006-2022
- Seat Alhambra — 1996-2022
- Seat Altea — 2004-2022
- Seat Ibiza (II, III, IV) — 1996-2009
- Seat Leon (I, II) — 1999-2022
1.9 TDI (Turbodiesel Direct Injection) создавали на базе 1.9 TD. Новинка получила другую головку блока цилиндров и новую систему питания: непосредственный впрыск, который и позволил повысить эффективность агрегата.
Впервые установили 1.9 TDI на Ауди-80 в 1991 году. Это был не первый TDI на рынке, но именно с ним связана мировая известность дизельных агрегатов концерна VAG.
90-сильная модификация AHU с классическим ТНВД и турбиной с перепускным клапаном стала эталонной в своем классе: разгон до 100 км/ч менее чем за 15 с и топливный расход на уровне 5,5 л на 100 км пути. А еще — беспроблемный холодный пуск в версиях с системой прямого впрыска и надежность самой конструкции.
Спустя непродолжительное время после выпуска 90-сильной версии AHU, производитель поставил на конвейер 110-сильный 1.9 TDI под индексом AFN.
Конструктивно он такой же, как AHU, но в нем впервые применили турбину с изменяемой геометрией, что позволило повысить крутящий момент и мощность. Этот 1,9-литровый турбодизель VAG стал самым распространенным в линейке.
В 1998 году появляется третье поколение мотора — 1.9 TDI PD с измененной системой впрыска, где форсунки и ТНВД объединены в единый узел — насос-форсунку, что позволило улучшить производительность и еще сильнее снизить расход топливо (при возрастающих расходах на эксплуатацию агрегата). Этот агрегат получил внутренний индекс AHH.
Конструктивно, это старый добрый AHU с турбиной от AFN. В результате получился агрегат с более высоким крутящим моментом при той же мощности.
А затем в конце 1999 года производитель заменил обозначения моторов, и AFN стал AVG. Правда, выпуск его продолжился всего год.
Потому что в 2000 году VAG наладил пилотный выпуск версий 1.9 TDI с насос-форсунками вместо традиционных ТНВД. Такая модернизация позволила создавать экстремально высокое давление внутри топливной магистрали, что приводит к быстрому эффективному впрыску и повышает мощность и крутящий момент двигателя.
Недостатки
В действительности технология, на которой основывается работа дизельного силового агрегата CRDI и его аналогов, существенно превосходит стандартные дизельные моторы. Но также система оказалась заметно сложнее, откуда вытекает перечень определённых недостатков.
- Высокий уровень чувствительности по отношению к качеству заливаемого дизельного топлива. Если в Европе этот недостаток проявляется не сильно, то в России и странах СНГ такая чувствительность даёт о себе знать практически сразу после начала эксплуатации. В двигателе используется сложная система и многоуровневая конструкция. Если в топливный насос, форсунки и любые иные элементы, отвечающие за подачу и обработку топлива, будет попадать мусор и различного рода загрязнения, это потенциально может спровоцировать возникновение серьёзных проблем и неполадок. Потому нельзя допускать, чтобы в топливе содержались подобные загрязнения. Это предусматривает обязательную необходимость применения исключительно высококачественного горючего. Поскольку в России отыскать заправки с чистым дизтопливом, реально соответствующим всем европейским нормам и стандартам, не так просто, автовладельцам приходится с особой тщательностью выбирать АЗС. Чтобы минимизировать риски, следует периодически проверять состояние фильтров и вовремя их менять.
- Сравнительно высокая стоимость. Если сравнивать именно с обычными традиционными дизельными моторами, то реализованные по технологии типа CRDI моторы изначально обойдутся покупателю дороже. Это обусловлено сложностью конструкции и системы непосредственного впрыска дизтоплива, что увеличивает производственные затраты на изготовление. Это же влечёт за собой удорожание мотора при его реализации. Чтобы CRDI работал правильно и корректно, его оснащают специальными датчиками, предварительно проводится специальная настройка, программируется электронный блок. Весь этот перечень обязательных мероприятий, которые осуществляются в процессе сборки и непосредственной подготовки двигателя к эксплуатации, требует ресурсов от автопроизводителей. Потому продавать CRDI по цене, аналогичной стандартным дизельным двигателям, компании просто не могут. Это будет прямым убытком, в котором никто не заинтересован.
- Сложность ремонта и высокая цена обслуживания. И этот недостаток непосредственно связан с тем, что CRDI с системой непосредственного впрыска дизельного горючего намного сложнее по своей конструкции и устройству. Из-за этого усложняется процесс ремонта и обслуживания, требуется больше ресурсов для комплексной диагностики. Поскольку сейчас такие моторы можно называть условно новыми разработками, которые сравнительно недавно вышли на рынок, пока далеко не каждый автосервис готов взяться за обслуживание и ремонт такого силового агрегата. У большинства мастеров попросту отсутствует опыт и знания сложного устройства такого двигателя. Они не в состоянии его качественно обслужить
- Сложность поиска мастеров. Вытекающий из всех предыдущих минусов недостаток, который является достаточно актуальным для автолюбителей из России и стран СНГ. Всё то же сложное устройство системы провоцирует такую проблему как дефицит кадров, способных обслуживать и качественно ремонтировать двигатели типа CRDI. Оптимальным решением считается обращение в сертифицированные и официальные сервисные центры, непосредственно связанные с компаниями, которые занимаются продажей автомобилей с соответствующими силовыми установками. Но это автоматически поднимает стоимость ремонта и обслуживания машины, гарантийный срок которой уже истёк.
- Низкий уровень ремонтопригодности. В отличие от тех же классических дизельных двигателей, где огромное количество отдельных деталей подлежат ремонту, восстановлению и замене, CRDI такими характеристиками похвастаться не может. Ремонтопригодность рассматриваемых дизельных моторов с системой непосредственного впрыска топлива и подачи горючего под давлением довольно незначительная. Большое количество элементов восстановлению не подлежат в случае выхода их из строя. Тут решить проблему можно только путём замены. Причём некоторые компоненты меняются исключительно модульно. Это автоматически заметно повышает затраты, связанные с обслуживанием и содержанием такого двигателя. Вместо того, чтобы купить одну небольшую деталь и поменять её, приходится приобретать целый модуль.
Общая оценка преимуществ tdi
Что это такое, мы уже выяснили. Теперь рассмотрим основные плюсы данных турбированных установок. Вообще, после вступления «Ауди» в концерн VAG, последний занял лидирующие позиции в списке производителей дизельных двигателей. Благодаря инновационным инженерным решениям, их двигатели отличаются:
- Высокой топливной экономичностью.
- Низким уровнем шума (практически не слышен на холостых).
- Высокими показателями динамики и крутящего момента.
Также данные силовые установки отвечают современным требованиям экологичности (стандарт выхлопов «Евро-6»). Существенный прирост мощности был достигнут благодаря особенной конструкции турбины. В отличие от других двигателей, компрессоры установок от VAG способны работать под давлением 2 тысячи бар.
Современные аналоги выдают лишь 1300 Бар. Также в двигателях TDI инжектор объединен с насосом. Это позволяет обеспечить максимальный контроль над впрыском топлива.
Главное преимущество таких моторов – значительный прирост мощности – 40% при уменьшении объемов потребленного горючего на 10-15%. Кроме того:
- продлевается срок службы деталей и двигателя;
- при работе мотор производит меньше шума;
- более высокий крутящий момент;
- уменьшилась вибрация;
- снизилась токсичность выбросов.
Это однозначно впечатляющий результат, но из-за сложности устройства, дорогих запчастей, ремонт затруднился и стал более дорогостоящим. К тому же за ремонт возьмется не каждый мастер. Причем запчасти рекомендуется использовать только фирменные, иначе на гарантию можно не рассчитывать. К тому же двигатели CDI особенно требовательны к качеству топлива.
Среди выявленных достоинств силовой установки образца Turbocharged Direct Injection нельзя не обратить внимания на следующее:
- мощность;
- экономичность;
- компактность;
- экологичность.
Этот набор определился не сразу и даже не после появления на рынке в 1980 г. Audi 80 с TDI под капотом, а лишь после многочисленных доработок и улучшений, что привело к запуску в серию в 1989 г. нового мощного турбодизеля, во многом не уступающего бензиновым агрегатам.
Специалисты признают, что TDI – один из лучших современных дизелей, эффективность которого определяется исходя из соотношения исходной мощности и крутящего момента на единицу объема цилиндра и расходованного топлива.
Также данные силовые установки отвечают современным требованиям экологичности (стандарт выхлопов «Евро-6»). Существенный прирост мощности был достигнут благодаря особенной конструкции турбины. В отличие от других двигателей, компрессоры установок от VAG способны работать под давлением 2 тысячи бар.
Все эти положительные характеристики появились не сразу. Даже после пришествия на рынок Audi 80 с двигателем TDI преобладание таких характеристик двигателя не наблюдалось. Только после кропотливой работы и различного вида доработок в 1989 году производители выпустили мощный турбодизель, который совершенно не уступал бензиновым двигателям.
Эксперты подтверждают, что двигатели TDI являются лучшими в современное время. Их результативность определена из пропорции исходной мощности и крутящего момента на 1 объема цилиндра и израсходованного топлива.
Особенности устройства
Автолюбителей и потенциальных покупателей корейских авто закономерно интересует вопрос о том, что же такое двигатели CRDI и какие отличительные особенности они имеют. Начнём с простого. А именно с расшифровки.
Некоторым уже известно, что обозначает эта аббревиатура CRDI. Это маркировка мотора, обозначающая Common Rail Direct Injection. Первые два слова дают понять факт использования одной общей топливной магистрали, которая применяется в корейских дизельных моторах и их аналогах.
Иногда такую магистраль называют не иначе как рейка. При этом топливо внутри этой магистрали находится не только под постоянным, но ещё и под достаточно высоким давлением. Само давление формируется за счёт работы топливного насоса высокого давления, знакомого многим по аббревиатуре ТНВД.
Но если сравнивать с классическими системами насосов высокого давления, то здесь открытие форсунок происходит не под влиянием избыточных параметров давления. Эта функция выполняется соленоидами, управление которыми осуществляется через ЭБУ.
Давление в CRDI никак не зависит от частоты осуществляемого вращения коленчатого вала или количества самого горючего. Водитель может контролировать и как-то влиять исключительно на количество топлива, которое впрыскивается в систему. Что же касается угла опережения и давления впрыска дизтоплива, то эта задачи полностью контролирует и регулирует управляющий блок, то есть ЭБУ. Подобная схема работы даёт возможность разделять создание рабочего давления и сам процесс впрыска топлива.
Это позволяет за один такт использовать более одной фары осуществляемого впрыска. Изначально двигатели типа CRDI были только двухфазные. Но уже сейчас на определённых силовых установках может встречаться порядка 9 фаз только на 1 такт.
Можно сказать, что главной особенностью таких дизельных моторов типа корейских CRDI и всех существующих полноценных аналогов заключается в следующем. Здесь подача топлива на инжекторные форсунки осуществляется за счёт использования общего резервуара.
Это позволяет существенно отличать CRDI от классических дизельных силовых агрегатов, где используется топливный насос и кулачковый привод.
Если учесть все конструктивные особенности, процесс работы рассматриваемого мотора можно описать следующим образом:
- когда водитель поворачивает ключ в замке зажигания, в топливной рейке происходит процесс нагнетания горючего за счёт работы специального установленного в конструкции насоса;
- при этом рейка выступает этим самым резервуаром или ёмкостью с горючим;
- в рейке топливо, нагнетаемое насосом, постоянно находится под давлением, что необходимо для осуществления впрыска;
- затем из рейки подаётся под давлением на инжекторные форсунки по соответствующим трубопроводам.
Подобные инженерные решения позволили получить двигателю типа CRDI целый ряд объективных преимуществ.
При этом нельзя забывать, что у мотора также есть определённые недостатки и проблемы, которые могут возникать в процессе эксплуатации. Хотя это характерно для любого двигателя.
Особенности эксплуатации cdi двигателя
Как уже было сказано выше, мотор CDI вынослив, долговечен, экономичен, однако его ремонт обходится чрезвычайно дорого. Причиной этого является необходимость закупки оригинальных запасных частей, которые изготавливаются по запатентованной технологии, обеспечивающей необходимую прочность металла
Чтобы не ускорять износ отдельных деталей и избежать ненужного ремонта, необходимо уделять внимание следующим моментам
- Использовать для заправки только качественное топливо, поскольку двигатель CDI очень чувствителен к посторонним примесям, загрязняющим форсунки топливного оборудования.
- Использовать только качественное масло, рекомендованное производителем, заменять масло вовремя, не дожидаясь образования нагара.
- Проводить диагностику и обслуживание форсунок не реже, чем через каждые 100 000 км пробега. При сборке после сервисных работ необходимо использовать новый фирменный крепёж, поскольку огнеупорные болты и шайбы рассчитаны на одноразовое применение, и при повторном монтаже их геометрия изменяется. В результате образуются зазоры на посадочных местах, которые забиваются продуктами сгорания, и последующее вскрытие блока происходит с большими затруднениями.
- Каждые 20 000 км необходимо обрабатывать термопастой свечи, иначе они пригорают, и в будущем, скорее всего, придётся их высверливать.
- Каждые 200 000 км необходимо заменять вкладыш кривошатунного механизма.
По сравнению с ранними моделями двигатель CDI показывает значительно более высокие эксплуатационные результаты. Но любая техника служит долго лишь при условии качественного ухода и своевременного профилактического обслуживания, которое желательно проводить в фирменном сервисном центре.
Паровые машины
Основная статья: Паровая машина
В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери.
Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.
В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.
К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел.
Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар.
Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне.
Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л. с.).
Проблемы с турбиной и сажевым фильтром на моторе 2.0 tdi (bmm)
Конечно, турбина на двигателей 2.0 TDI (BMM) может пострадать и из-за разжижения моторного масла, которое смазывает и охлаждает подшипники, на которых закреплен и вращается ее вал. Однако нередко, при отсутствии проблемы с попаданием дизтоплива в масло, люди сталкиваются с тем, что турбина начинает свистеть при работе постоянно или периодически.
При этом компьютерная диагностика ошибок не выявляет, все уплотнения впускного коллектора прочны и герметичны. Вероятной причиной постороннего звука от турбины может быть выработка на ее валу, которая привела к смещению ротора турбины и его задеванию за корпус «улитки» горячей части.
Подобное смещение происходит из-за противодавления газов во впускном коллекторе, возникающем из-за засорения сажевого фильтра. Да, при этом компьютерная диагностика может показать весьма хорошее состояние сажевого фильтра. Причина в том, что на моторе 2.0 TDI (BMM) нередко отказывает дифференциальный датчик давления.
Причем, отказывает он таким образом, что дает лишь хорошие данные: якобы проходимость фильтра хорошая и засоренность на очень низком уровне. Из-за такой неправды не активируется «прожиг» сажевого фильтра, в результате он просто постепенно забивается. Свист турбины – это лишь один из симптомов, который устраняется только полным ремонтом ее картриджа.
Также засорение сажевого фильтра может приводить к другим ситуациям, таким как снижение мощности двигателя или невозможность его работы. Бывают случаи, когда сажевый фильтр засоряется так быстро и сильно, что двигатель 2.0 TDI (BMM) перестает заводиться или держит холостой ход буквально несколько секунд, а потом глохнет, так как выхлопным газам просто некуда деваться.
Проблемы и поломки мотора 2.0 TDI не носят массового характера и проявляются с количеством пройденных километров. За утечками дизтоплива в масло нужно следить практически все время во избежание тотальной поломки двигателя. Если все-таки двигатель 2.0 TDI не избежал этой проблемы, то выгоднее и просто дешевле купить контрактный двигатель с гарантией у компании Motorland.
Купить двигатель 2.0 TDI (BMM) для VW Touran, VW Golf 5, Golf Plus и других автомобилей вы можете у компании «МоторЛэнд».
Серный вопрос
В России сейчас допускается использование дизтоплива с содержанием серы 0,05%, а по европейским нормам ее в топливе должно быть на порядок меньше — не более 0,005%! Чем же так опасна сера? Прежде всего, тем, что после сгорания оксиды серы соединяются с водой и образуют серную и сернистую кислоту. Ущерб экологии налицо. К тому же сера снижает эффективность работы каталитического нейтрализатора.
Однако все больше нефтеперерабатывающих компаний переходят на выпуск дизельного топлива, удовлетворяющего нормам Евро 4. Партнером Audi Russia с 2008 года стала российская . На сегодняшний день дизельное топливо производства «Лукойл» — самое современное в России, соответствующее европейскому стандарту ЕN-590 версии 2004 года (Евро-4). Это значит, что серы в таком топливе не более 0,005%, а цетановое число не ниже 51 единицы.
Цетановое число — обратный аналог октанового числа для бензина. Чем оно выше, тем больше склонность топлива к самовоспламенению или детонации, которая, в отличие от бензинового мотора, не только не вредна, но просто необходима для нормальной работы дизельного двигателя.
Еще одна проблема — повышенная вязкость дизельного топлива при низкой температуре. Все видели, как в мороз на обочине стоит КамАЗ, под которым ползает водитель с паяльной лампой. Заправился летней соляркой… Дело в том, что зимой использовать летнее топливо рискованно — температура в любой момент может опуститься ниже «критической отметки».
И тогда попытки запуска могут привести к выходу из строя топливной аппаратуры, которая не может долго работать «всухую». В состав дизельного топлива «Лукойл» входят компоненты, улучшающие низкотемпературные свойства топлива. А смена топлива на сети заправок в соответствии с сезоном строго контролируется.
Впрочем, зимний запуск дизельного автомобиля можно облегчить, установив предпусковой подогреватель. Он предлагается в качестве опции почти на все модели Audi. Компания Audi, которая одной из первых начала официальные поставки дизельных легковых автомобилей на российский рынок, делает их все привлекательнее для покупателя.
Так, в прошлом году межсервисный интервал для дизельных автомобилей Audi TDI был увеличен. Теперь он составляет, как и для бензиновых версий, 15000 км. Да и выходные характеристики дизельных Audi порой даже лучше, чем бензиновых. Так, дизельный Audi Q7 4,2 TDI разгоняется до 100 км/ч на секунду быстрее, чем бензиновый Audi Q7 4,2 FSI (6,4 с против 7,4 с).
При этом средний расход топлива у дизельной модификации почти на два с половиной литра меньше. А в 2008 году под капотом Audi Q7 появился новейший шестилитровый турбодизель V12 TDI — первый в мире двенадцатицилиндровый турбодизель под капотом легкового автомобиля. Мощность — 500 л.с., крутящий момент — 1000 Нм!
Турбонаддув tdi: турбина с изменяемой геометрией
От эффективности работы турбоанддува TDI в значительной мере зависит не только динамика, но и экономичность наряду с экологичностью. Правильное наддува воздуха должно быть реализовано в максимально широком диапазоне. По этой причине на моторы TDI ставится турбокомпрессор с изменяемой геометрией турбины.
Ведущие производители турбин в мире используют следующие названия:
- Турбина VGT (от англ. Variable Geometry Turbocharger, что означает турбокомпрессор с изменяемой геометрией). Производится BorgWarner.
- Турбокомпрессор для дизеля VNT (от англ. Variable Nozzle Turbine, что означает турбина с переменным соплом). Это название использует фирма Garrett.
Турбонагнетатель с изменяемой геометрией отличается от обычной турбины тем, что имеет возможность регулировки как направления, так и величины потока отработавших газов. Данная особенность позволяет добиться наиболее подходящей частоты вращения турбины применительно к конкретному режиму работы ДВС. Производительность компрессора в этом случае сильно повышается.
Например, турбина VNT имеет в основе конструкции специальные направляющие лопатки. Дополнительно имеется механизм управления, а также отмечено наличие вакуумного привода. Указанные лопатки турбины производят поворот на необходимый угол вокруг свой оси, тем самым способны менять скорость и направление потока выхлопа. Это происходит благодаря изменению величины сечения канала.
Статья в тему: Впрыск воды в двигатель: как сделать самому
Механизм управления отвечает за поворот лопаток. Конструктивно механизм имеет кольцо и рычаг. На рычаг оказывает воздействие вакуумный привод, который управляет работой механизма посредством специальной тяги. Вакуумный привод управляется отдельным клапаном, который ограничивает давление наддува.
- температурный датчик, который измеряет температуру воздуха на впуске;
- датчик давления наддува;
Другими словами, турбонаддув на TDI работает так, чтобы давление наддувочного воздуха всегда было оптимальным на разных оборотах двигателя. Фактически, турбина дозирует энергию потока отработавших газов.
- Как известно, на низких оборотах двигателя скорость потока (энергия) выхлопа является достаточно низкой. В таком режиме направляющие лопатки обычно закрыты, чем достигается минимальное сечение в канале. В результате прохождения через такой канал даже небольшое количество газов более эффективно крутит турбину, заставляя компрессорное колесо вращаться заметно быстрее. Получается, турбокомпрессор обеспечивает большую производительность на низких оборотах.
- Если водитель резко нажимает на газ, тогда у обычной турбины возникает эффект так называемой «турбоямы». Под турбоямой следует понимать задержку отклика на нажатие педали газа, то есть не моментальный прирост мощности, а подхват после небольшой паузы. Такая особенность обусловлена инерционностью системы турбонаддува, в результате чего потока газов оказывается недостаточно в момент резкого увеличения оборотов коленвала. В турбинах с изменяемой геометрией направляющие лопатки осуществляют свой поворот с определенной задержкой, что позволяет поддерживать нужное давление наддува и практически избавиться от турбоямы.
- При езде на высоких и приближенных к максимальным оборотах двигателя отработавшие газы имеют максимум энергии. Чтобы предотвратить создание избыточного давления наддува лопатки в турбинах с изменяемой геометрией поворачиваются так, чтобы мощный поток газов двигался по широкому каналу с наибольшим поперечным сечением.